
NEW TECH FORUM
By Zubin Irani, InfoWorld

SEP 8, 2016

About 
Emerging tech dissected by technologists

5 common pitfalls of CICD -- and how
to avoid them
What's the secret to devops success? Start with continuous
integration and continuous deployment

Devops may be one of the haziest terms in software development, but most of us agree

that five activities make devops what it is: continuous integration, continuous delivery,

cloud infrastructure, test automation, and configuration management. If you do these

five things, you do devops. Clearly, all five are important to get right, but all too easy to

get wrong. In particular, continuous integration and continuous delivery (CICD) may be

the most difficult devops moves to master.

Continuous integration (CI) is a process in which developers and testers collaboratively

validate new code. Traditionally, developers wrote code and integrated it once a month

for testing. That was inefficient -- a mistake in code from four weeks ago could force the

developers to revise code written one week ago. To overcome that problem, CI depends

on automation to integrate and test code continuously. Scrum teams using CI commit

code daily at the very least, while a majority of them commit code for every change

introduced.

[Download the Deep Dive: Monitoring in the age of devops. | Get a digest of the day's top

tech stories in the InfoWorld Daily newsletter.]

 
 Sign In | Register

�

http://www.infoworld.com/blog/new-tech-forum/
http://www.infoworld.com/blog/new-tech-forum/
http://www.infoworld.com/blog/new-tech-forum/index.rss
http://www.infoworld.com/resources/96133/devops/monitoring-in-the-age-of-devops#tk.ifw-infsb
http://www.infoworld.com/newsletters/signup.html#tk.ifw-infsb
http://www.infoworld.com/
http://www.infoworld.com/learn-about-insider/
javascript://
javascript://

Continuous delivery (CD) is the process of continuously creating releasable artifacts.

Some companies release to users once or even multiple times a day, while others release

the software at a slower pace for market reasons. Either way, the ability to release is

tested continuously. Continuous deployment is possible thanks to cloud environments.

Servers are set up such that you can deploy to production without shutting down and

manually updating servers.

Thus, CICD is a process for continuous development, testing, and delivery of new code.

Some companies like Facebook and Netflix use CICD to complete 10 or more releases

per week. Other companies struggle to hit that pace because they succumb to one or

more of five pitfalls I’ll discuss next.

Pitfall No. 1: Automating the wrong processes first

This trap tends to strike organizations making the shift from waterfall development to

devops. New organizations have the advantage of implementing CICD from scratch.

Existing companies have to journey gradually from manual to highly automated

development. The full transition can take several months, which means you need to be

iterative in how you adopt CICD.

When you ask, “Does this need to be automated now?” run through the following

checklist:

1. How frequently is the process or scenario repeated?

2. How long is the process?

3. What people and resource dependencies are involved in the process? Are they

causing delays in CICD?

4. Is the process error-prone if it is not automated?

5. What is the urgency in getting the process automated?

Using this checklist, you can prioritize the steps in a CICD implementation. First and

foremost, automate the process for compiling code. Ideally, you will integrate code

multiple times per day (1). Manually, the process takes a few minutes to a couple of

hours (2). That stalls output until the compiler finishes the task (3). It is also susceptible

to human error (4), and because CICD is a pipe dream without automated integration,

this is urgent (5).

We can run the same checklist on testing. As you transition to CICD, you might wonder:

Should we automate functional testing or UI testing first? Both will be repeated at least

once per day (1). Both can take two to three hours for a medium-sized application (2).

But they involve multiple dependencies (3). If you automate functional testing, you may

not have to update the automation script that frequently. The UI, on the other hand,

often changes and thus requires frequent script changes. Although both are error-prone

(4), you should prioritize functional testing before UI testing to make the best use of

your resources (5).

Let’s do this one more time with the process of setting up environments. This scenario is

only repeated frequently if you’re on a hiring spree or experiencing heavy churn (1). It’s a

rather time-consuming process that can take several hours if not days (2). New team

members can’t do anything helpful without environments, so clearly there is a

dependency and delay (3). I wouldn’t say that the process is error-prone (4), so is it still

urgent (5)? I lean toward yes, but I’d still prioritize integration and functional testing first.

There is no such thing as overautomating. If you had unlimited resources, you would

automate everything possible. That said, you cannot achieve total test automation.

Sometimes you can break down tasks into smaller segments and automate in patches.

Sometimes you should simply document the process in detail and execute it manually.

Pitfall No. 2: Confusing continuous deployment for continuous
delivery

Continuous deployment is the concept that every change made in the code base will be

deployed almost immediately to production if the results of the pipeline are successful.

This is terrifying to most organizations because rapid product changes can scare away

users.

Companies believe that if they do not practice continuous deployment, they are not

doing CD. They fail to distinguish between continuous deployment and continuous

delivery.

Continuous delivery is the concept that every change to the code base goes through the

pipeline up to the point of deploying to nonproduction environments. The team finds

and addresses issues immediately, not later when they plan to release the code base.

The code base is always at a quality level that is safe for release. When to release the

code base to production is a business decision.

Whereas continuous deployment unsettles most organizations, continuous delivery

resonates with them. Continuous delivery gives them control over product rollout,

functionality, and risk factors. There is time for alpha testing, for beta customers, for

early adopters, and so on.

Pitfall No. 3: Lack of meaningful dashboards and metrics

In CICD implementations, the scrum team may create a dashboard before members

know what they need to track. As a result, the team falls prey to a logical fallacy: “These

are the metrics we have, so they must be important.” Instead, perform a progressive

assessment before designing a dashboard.

Different members of an IT organization, and even various members of a scrum team,

have different priorities. For instance, the folks in a network operation center (NOC) love

red, yellow, and green indicators. Such traffic light dashboards enable NOC staff to

distinguish problems without reading dense text or taxing their analytical abilities. Traffic

lights help make hundreds of servers manageable.

You might be tempted to use a traffic light dashboard for CICD too. Green, we’re on

track. Yellow, we’re off track, but we have a plan to address that. Red, we’re off track and

likely need to change our objectives.

That dashboard is probably useful to a scrum master, but what about the VP of

development or the CTO? If a scrum team has 350 hours of work ahead for a two-week

sprint, and its 10 members are accountable for 35 hours each, they would receive a

corresponding number of story points. Upper management might be less interested in

the status of story points and more curious about the “burndown” rate: the speed of task

completion. Do team members carry their loads? How quickly? Are they improving over

time?

Unfortunately, burndown rates could be misleading if the various stakeholders don’t

understand the scrum team’s agreed-upon habits. Some teams burn down points early

as they go. Others wait until near the end of the sprint to burn down open points. The

dashboard should take that into account.

If you can assess what data everyone wants and establish a standard narrative for what

that data means, then you can design a useful dashboard. But don’t obsess over

substance at the expense of appearance. Ask how stakeholders want it to look. Would

graphs, text, or numbers be best?

These are the considerations to investigate in a progressive assessment. They illustrate

how tricky it is to make a useful CICD dashboard -- and to make everyone happy. Too

often, the most vocal team member hijacks the process, and others feel frustrated that

the dashboard meets only one person’s preferences. Listen to everyone.

Pitfall No. 4: Lack of coordination between CI and CD

This pitfall takes us back to our consensus definition of devops, which holds that CI and

CD are two different items. CI feeds CD. Implementing a decent CI pipeline and a full CD

system takes months and requires collaboration. Quality assurance, the devops team,

ops engineers, scrum masters -- all must contribute. Perhaps the toughest aspect of

CICD is this human factor rather than any technical challenge we’ve discussed. Just as

you can’t program a healthy relationship between two people, you cannot automate

collaboration and communication.

To gauge this level of coordination, benchmark your CICD process against the best in

the business. Companies like Netflix can complete integration, testing, and delivery in a

matter of two to three hours. They established a system that passes code from hand to

hand without indecision and discussion. No, it’s not 100 percent automated because

that is impossible with current technology.

Pitfall No. 5: Balancing the frequency of running CI jobs and

Pitfall No. 5: Balancing the frequency of running CI jobs and
resource utilization

CI jobs are supposed to be triggered for every change that is introduced in the code.

Successful jobs allow the changes to go through while failures reject the changes. This

encourages developers to check in smaller chunks of code, triggering more builds in a

day. However, unnecessary CI jobs consume resources, which wastes time and money.

Because this process involves a lot of resource utilization (CPU, power, time), the

software should be broken into smaller components to create faster-running pipelines.

Or the CI jobs should be designed to batch check-ins that are first tested locally. The

goal is to find a balance between the frequency of executing CI jobs and the utilization

of resources.

Keep the goal in sight

As we dig into the pitfalls of CICD -- complete with all of its esoteric terminology -- it’s

easy to lose sight of why this matters. Ultimately, CICD is essential because it meets

business goals.

Technology executives know that continuous evolution, quick fixes, and quality results

create and retain customers. They know that a failed release invites a bludgeon to App

Store reviews, and regaining high reviews is harder than keeping them. Devops might

create a better work experience for your team, but that is not why companies implement

devops.

Simply put, the pitfalls of CICD are worth reviewing because billions of dollars are at

stake. While I don’t suggest you add a stock ticker or App Store review tracker to your

CICD dashboard, I do urge you to stay cognizant of this. A lot depends on the minutiae

of CICD.

Zubin Irani is co-founder and CEO of cPrime, a full-service consultancy that implements

agile transformations and delivers agile solutions for more than 50 Fortune 100 firms and

many of Silicon Valley's biggest employers.

https://www.cprime.com/

Copyright © 2017 IDG Communications, Inc.

YOU MIGHT LIKE

Follow everything from InfoWorld     

New Tech Forum provides a venue to explore and discuss emerging enterprise

technology in unprecedented depth and breadth. The selection is subjective, based on

our pick of the technologies we believe to be important and of greatest interest to

InfoWorld readers. InfoWorld does not accept marketing collateral for publication and

reserves the right to edit all contributed content. Send all inquiries

to newtechforum@infoworld.com.

Cable Companies Furious Over
This New Device
TV Frog

Simplify The Management of IT
Chargeback and Billing
Calero

33 War Photos They Don't Show
In The History Books
USA Social Condition

 Ads by Revcontent

http://www.infoworld.com/about/copyright.html
https://twitter.com/infoworld
https://www.facebook.com/InfoWorld
https://www.linkedin.com/company/164364
https://plus.google.com/100116140147692954063/posts
http://www.infoworld.com/about/rss.html
mailto:newtechforum@infoworld.com
http://trends.revcontent.com/click.php?d=fxY5yudaASgwzrJZm4Y0mWJOrNkDMcBO%2Bkw4LNGe6xcmoPrLCnvEXYS54dgsmA6lNWtCOa5%2FG1W6TVUmuPVroN4KqnwAcQKhPBibVVd9TlU79hiMDrCpWk72MjO%2BbKgGeof5s6yVpqURmJjjsYP%2FMsyYNpsJM1KFTq7mcxBX2X40oPXf0b7GC%2FgPUhQIRxAKrBg%2Bd7etjg3UgX9sTb7e3aWZ6MWjBO0hZo76mI%2FMQXI1%2FN4tPhpJXeOMLxHJM%2BPEza%2B8UWzO9VaiUIg1IyMxbJsrO58KMWQjbWZQgF5nAPvtfPIxZ4fmnsT1qEPcfTdPOYCKQ55KuP9rr1CJgaVjm069U8mNkvI0%2B5tPzbFADc%2BFYuuTK6FSjDTisXfcgr134r54JDnQVV7busdjlJk8EXRTveBwVRl0S%2B04limM54RIAC2Mh%2Fxnj%2BcpkzWrb8ydpKW0e58ffk0yVg9L5fPHJd%2FoXF1C8Ul%2Fxnc32BWmx76IXRe5ZhR5jYgjNC3DujNtNRBpNavS4hKYFtCI8AVcAkWkebYGJG8ME6DfMYvKJP2mZXTdjHCdlFWNFqGowNkIh%2Bup9U4U5SsrU7gzaweuvF5b68NlG1ey1o2DoF%2F52fbfoCiCo1QgMxk75X%2FJGCNmnBF5kfYbTIL5NxxoUojDxIu2IWXmiBilL7KXDv3cLUZWXUAWq6h8h9v%2BqBCQGZBfecgTimVIK0JzAE%2FUoqQiOlDUBpJP7jtr%2BIXBdvvnoN6E9ufyBTn7VxKrgXUl0jp7&viewed=true
http://trends.revcontent.com/click.php?d=%2BBmqSniFQBIP6pF99If0cprlNDr%2Bj9GHY%2B5d3jcvuPrhy%2BPRQporfHDOmlzpn8VKuoj3szU0r1dbkGXBnCnsfsbhFSOVpevP7QujRJlDaT2NCWoSXcG0K3z0389vJwdDvxNyh2spwuBS032N%2BThlLWuaL3MgG94kJhu4Y5xcNrc8fPgYCLXOk13j5d5YT8eTzrvuomgNMZkJvSSyO4CtlHNPDDXj3eD8%2FAXW%2FqTguq6Q9BN8cC9x9Tai9yAu%2FDHn5fcdFhpKJuBPMj1LgId7SglXILq9WPGWWsuP8jDmY0yIy8Sii7W6J0s9BVwfh5sOAWQxnqfkJfrLCziO%2B4irAwhXnFIhNF5ndLU5kLpvZRV7mrONdg1%2FdANpzX7Qtckma%2FswtgiaNN1EipH%2BPbvZEFY40ExxZr%2BBAMxFyKJtw%2FpOqxOcqz9QrpmSDvvdup4oEfMFn9EAXrKlL%2B%2Back%2F1uoNnKdATa%2F7cee8Vpct1XbhNvOBllU3wx1TywNVIfmsqXegD7zsfvOusMEkw7MySJZVXQSS%2FdorMf1sNkO%2FK82kSEowqkFD0Dts2AR4GEOKijq9x4Q9m8y1ElE%2FOIIPbugNIe0yAPhOWEQvOzSV8OkOuDJF6W%2F19AJO300Jc%2F76zLCgqs83I%2BraS6Va40YsK8YLP1XH1u3OA1iT%2BJ0OFCnW6HrF0nI6EulsJEJUwFJ55MOhEThHpUHB5%2BNG2ugcUFhreczUCPC31YxetvjS20A8aKDO7vGR41XsbiMrsLEage8fXrFzH8C1yZ3T91%2FvAEf%2F91qtB9z4lLlD2adaUOu8%3D&viewed=true
http://trends.revcontent.com/click.php?d=TqTTjTzPU02y73otrXWlUQxIycnFJFx9MrVomMlhccPZxWnuSRFbnE8ww%2BOxm0g6eIuhY0jZ8ZV%2F6E%2B2smN3F7oFpriRWIGsLtUa6O8iql8W40nsQlk0WX08YJbpDySW%2FaaJQ%2BR7e%2BLn0ZmTvgu7l4Y3Aguy1e1KszWckclxhkPrL%2Fa5tgk%2FNWl22%2F7v17xa8z7SCHaZ2SkFDo9tcubQOWmBXe6BBB5GuOPyhOF37V4YUXADBmU7bLYcNz3b0bz%2ByqZwmMI5mtfmR5Of12Tq3lBgp9%2BFfZ4zJaF8ScZfQ5MXp2sl%2FkF1xLKpGMIzcD2aydSOuCVLploRU7I4uF7QN%2FV1wfYUJoVcCL9hZRHdOS%2F4d2NPhYjZdC7O09ZNCFAVUQ7LHg3PN8j9FRZI9B4PJunSVvVB4TK20G%2BNTjqWTu62tgJl9x7hconbNykPSU0xwF%2FAsDQVeqlPk4Uj8dPedRF7AT%2FtMIN3bvNX9DIkYaGtH4%2FhLhygCkAxGG9To9D86zm2jDVcsX00cKD0r57dhI%2FIDGrwu%2BllALqwZ3hzIH2HPBodpAEwC3CvVs%2B1FW6NLII%2B3OcUy3RrYfinTw6xlpG2nDfdLuUM0ceBP9AufTakj37EMEyUkNrtHM5fs%2BHIFocNkXZm%2F%2FiGApBX3RjWntMLHiOtzZDN%2BrMAL1M%2BDnnQ%2Bk8QVRY3qjjrmda9JRXWKzxNv9Gqy1%2FRd0RfEUcbpyYiuqQRSf3MeGUk3NNijjZST4ShKiHkzrAbOOMsqdq2uE0xKH3cRPPyuVeJ9a%2BBgQ%3D%3D&viewed=true

